Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(29): 19911-19922, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37458457

RESUMO

The zeolitic imidazolate framework, ZIF-8, has been shown by experimental methods to have a maximum saturation adsorption capacity of 0.36 g g-1 for n-butanol from aqueous solution, equivalent to a loading of 14 butanol molecules per unit cell or 7 molecules per sodalite ß-cage. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows the presence of hydrogen bonding between adsorbed butanol molecules within the cage; the presence of three different O-H stretching modes indicates the formation of butanol clusters of varying size. Ab initio molecular dynamics simulations show the formation of intermolecular hydrogen bonding between the butanol molecules, with an average hydrogen-bond coordination number of 0.9 after 15 ps simulation time. The simulations also uniquely demonstrate the presence of weaker interactions between the alcohol O-H group and the π-orbital of the imidazole ring on the internal surface of the cage during early stages of adsorption. The calculated adsorption energy per butanol molecule is -33.7 kJ mol-1, confirming that the butanol is only weakly bound, driven primarily by the hydrogen bonding. Solid-state MAS NMR spectra suggest that the adsorbed butanol molecules possess a reasonable degree of mobility in their adsorbed state, rather than being rigidly held in specific sites. 2D 13C-1H heteronuclear correlation (HETCOR) experiments show interactions between the butanol aliphatic chain and the ZIF-8 framework experimentally, suggesting that O-H interactions with the π-orbital are only short lived. The insight gained from these results will allow the design of more efficient ways of recovering and isolating n-butanol, an important biofuel, from low-concentration solutions.

2.
Bioresour Technol ; 369: 128479, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513305

RESUMO

This article reports a safe, low-cost, and industrially applicable magnetite supported on activated carbon catalyst that can be magnetically retrieved from the solid and reused multiple times without the need of a regeneration step. The FeOx/C catalyst improved the bio-oil yield by 19.7 ± 0.96 % when compared to the uncatalysed reaction at 320 °C for the HTL of draff (brewer's spent grains). The use of homogeneous Na2CO3 base as a catalyst and co-catalyst, improved carbon extraction into the aqueous phase. The exceptional catalytic activity can be attributed to the Fe3O4 phase which can produce in-situ H2 that improves the biomass decomposition and oil property with an energy recovery of ∼84 %. The FeOx/C catalyst was separated using magnetic retrieval and maintained its catalytic activity even up to 5 reaction cycles showing potential as a cheap catalyst for HTL reactions and can be scaled-up for industrial applications.


Assuntos
Biocombustíveis , Óleos de Plantas , Temperatura , Biomassa , Água
3.
Dalton Trans ; 51(47): 18010-18023, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36367465

RESUMO

The formation of different nickel and cobalt layered hydroxide phases by a variety of solution and solid-state synthesis methods has been investigated. Initially, preparative methods were refined to generate single-phase products from metal(II) nitrate hexahydrate starting materials which were then characterised by powder X-ray diffraction, vibrational spectroscopy and thermogravimetric analysis. As well as the brucite type ß-M(OH)2 and the hydrotalcite-like [M(OH)2-x(H2O)x]x+ alpha-phases (where M = Ni, Co), two different hydroxynitrate phases were isolated with the generic formula M(OH)2-x(NO3)x with x = 0.67 and 1.0 (where M = Ni, Co). The reduction of symmetry of the nitrate anion from D3h to C2v allows the alpha-phases to be distinguished from the two different layered hydroxynitrate phases by both infrared and Raman spectroscopy through the loss of symmetry and concomitant splitting of the degenerate bands. The symmetric N-O stretch enables the two hydroxynitrate phases to be distinguished from one another through the sharp absorption bands at ca. 1000 cm-1 (x = 0.67) and ca. 1050 cm-1 (x = 1.0). The thermogravimetric analysis data of the phases showed key differences between the layered hydroxides, with anhydrous phases having singular weight losses over short temperature ranges and hydrated phases having multiple losses over more extended temperature ranges.

4.
Angew Chem Int Ed Engl ; 61(47): e202208677, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36161683

RESUMO

Porous organic molecular materials represent an emergent field of research in Chemistry and Materials Science due to their unique combination of properties. To enhance their performance and expand the number of applications, the incorporation of hierarchical porosity is required, as exclusive microporosity entails several limitations. However, the integration of macropores in porous organic molecular materials is still an outstanding challenge. Herein, we report the first example of a hydrogen-bonded organic framework (MM-TPY) with hierarchical skeletal morphology, containing stable micro- and macroporosity. The crystal size, from micro to centimetre scale, can be controlled in a single step without using additives or templates. The mechanism of assembly during the crystal formation is compatible with a skeletal crystal growth. As proof of concept, we employed the hierarchical porosity as a platform for the dual, sequential and selective co-recognition of molecular species and microparticles.

5.
ACS Appl Energy Mater ; 5(7): 8336-8345, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35909805

RESUMO

The controlled vapor hydrolysis of LiAlH4 has been investigated as a safe and predictable method to generate hydrogen for mobile fuel cell applications. A purpose-built vapor hydrolysis cell manufactured by Intelligent Energy Ltd. was used as the reaction vessel. Vapor was created by using saturated salt solutions to generate humidity in the range of 46-96% RH. The hydrolysis products were analyzed by thermogravimetric analysis (TGA) and powder X-ray diffraction and compared with possible hydroxide-based phases characterized using the same methods. Analysis of the products of the LiAlH4 vapor hydrolysis reaction at a relative humidity in excess of 56% indicated complete decomposition of the LiAlH4 phase and formation of the hydrated layered double hydroxide, [LiAl2(OH)6]2CO3·3H2O, rather than the simple salts, LiOH and Al(OH)3, previously suggested by the literature. The high level of hydration of the layered double hydroxide (LDH) (12% wt water) and the presence of carbonate indicated that the feed stream was contaminated with CO2 and that the highly hydrated and hygroscopic product would be detrimental to the mobile hydrogen production process, restricting recyclability of the water fuel cell byproduct and lowering the gravimetric density of LiAlH4. Carrying out the vapor hydrolysis reaction in a glovebox in the absence of CO2 indicated that the hydroxide derivative of the LDH, [LiAl2(OH)6]OH·2H2O, could be formed instead, but the water content was even more significant, equating to 17% of the carried weight. TGA showed that water was retained up to 300 and 320 °C in the two phases, making thermal recycling of the water retained impractical and casting doubt on whether generating hydrogen on the move by vapor hydrolysis of LiAlH4 is practical.

6.
Chemistry ; 16(21): 6278-84, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20397167

RESUMO

Dinuclear alkynylcopper(I) ladderane complexes are prepared by a robust and simple protocol involving the reduction of Cu(2)(OH)(3)OAc or Cu(OAc)(2) by easily oxidised alcohols in the presence of terminal alkynes; they function as efficient catalysts in copper-catalysed alkyne-azide cycloaddition reactions as predicted by the Ahlquist-Fokin calculations. The same copper(I) catalysts are formed during reactions by using the Sharpless-Fokin protocol. The experimental results also provide evidence that sodium ascorbate functions as a base to deprotonate terminal alkynes and additionally give a convincing alternative explanation for the fact that the Cu(I)-catalysed reactions of certain 1,3-diazides with phenylacetylene give bis(triazoles) as the major products. The same dinuclear alkynylcopper(I) complexes also function as catalysts in cycloaddition reactions of azides with 1-iodoalkynes.

7.
Chem Commun (Camb) ; 46(13): 2274-6, 2010 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-20234930

RESUMO

Polymeric dinuclear alkynylcopper(I) complexes, for example phenylethynylcopper(I), can be prepared by a robust method involving the interaction of terminal alkynes with copper(II) salts in acetonitrile. The use of the ladder polymers provides heterogeneous catalysts for copper-catalyzed azide-alkyne cycloaddition (CuAAC) reactions and provides important mechanistic information.

8.
Chem Commun (Camb) ; (45): 4812-4, 2007 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-18004450

RESUMO

Reaction of S(2)N(2) vapour with Na-ZSM-5 results in rapid polymerisation and inclusion of the resulting (SN)(x) within the zeolite channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...